Phase-Dependent Modulation of Signal Transmission in Cortical Networks through tACS-Induced Neural Oscillations
نویسندگان
چکیده
Oscillatory neural activity is considered a basis of signal transmission in brain networks. However, the causal role of neural oscillations in regulating cortico-cortical signal transmission has so far not been directly demonstrated. To date, due to methodological limitations, studies on the online modulatory mechanisms of transcranial alternating current stimulation (tACS)-induced neural oscillations are confined to the primary motor cortex. To address the causal role of oscillatory activity in modulating cortico-cortical signal transmission, we have established a new method using concurrent tACS, transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Through tACS, we introduced 6-Hz (theta) oscillatory activity in the human dorsolateral prefrontal cortex (DLPFC). During tACS, we applied single-pulse TMS over the DLPFC at different phases of tACS and assessed propagation of TMS-induced neural activity with EEG. We show that tACS-induced theta oscillations modulate the propagation of TMS-induced activity in a phase-dependent manner and that phase-dependent modulation is not simply explained by the instantaneous amplitude of tACS. The results demonstrate a phase-dependent modulatory mechanism of tACS at a cortical network level, which is consistent with a causal role of neural oscillations in regulating the efficacy of signal transmission in the brain.
منابع مشابه
Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability
Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematic...
متن کاملTranscranial Alternating Current and Random Noise Stimulation: Possible Mechanisms
Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mecha...
متن کاملBrain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations.
Gamma and beta oscillations are routinely observed in motor-related brain circuits during movement preparation and execution. Entrainment of gamma or beta oscillations via transcranial alternating current stimulation (tACS) over primary motor cortex (M1) has opposite effects on motor performance, suggesting a causal role of these brain rhythms for motor control. However, it is largely unknown w...
متن کاملBrain oscillations and frequency-dependent modulation of cortical excitability.
BACKGROUND Noninvasive brain stimulation is a powerful way to modify excitability of the cerebral cortex in humans and is increasingly used to treat psychiatric disorders. The observed clinical effects are in the moderate range and it has been suggested that the efficiency of brain stimulation depends on the underlying cortical state. OBJECTIVE To isolate and manipulate brain rhythms associat...
متن کاملAlpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment
BACKGROUND Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8-12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillator...
متن کامل